BPG致力于知识发现和传播
Featured Articles
2025/5/28 14:56:38 | Browse: 9 | 下载: 9
Publication Name |
世界华人消化杂志 |
手稿编号 |
40221 |
手稿来源省、自治区或特别行政区 |
天津市 |
 |
Received |
|
2025-04-01 15:48 |
 |
Peer-Review Started |
|
2025-04-02 00:06 |
 |
To Make the First Decision |
|
|
 |
Return for Revision |
|
2025-04-15 01:47 |
 |
修回稿 |
|
2025-04-21 06:17 |
 |
Second Decision |
|
2025-05-07 09:04 |
 |
期刊总编辑接受 |
|
|
 |
公司总编辑接受 |
|
2025-05-08 01:49 |
 |
预出版 |
|
2025-05-08 01:49 |
 |
缴纳版面费 |
|
|
 |
Edit the Manuscript by Language Editor |
|
|
 |
排版 |
|
2025-05-27 23:14 |
 |
在线出版 |
|
2025-05-28 09:53 |
ISSN |
1009-3079 (print) and 2219-2859 (online) |
开放获取 |
This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/ |
版权 |
©The Author(s) 2025. Published by Baishideng Publishing Group Inc. All rights reserved. |
Article Reprints |
For details, please visit: http://www.wjgnet.com/bpg/gerinfo/247
|
Permissions |
For details, please visit: http://www.wjgnet.com/bpg/gerinfo/207
|
Publisher |
Baishideng Publishing Group Inc, 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA |
网址 |
http://www.wjgnet.com |
专业类型 |
消化肿瘤学 |
手稿栏目类型 |
临床研究 |
文章标题 |
基于影像组学和临床特征构建用于区分胰腺良恶性病变的多模态可解释机器学习模型
|
手稿来源 |
自由来稿 |
所有作者列表 |
蔡晓晗, 范晓飞, 李姝, 方维丽, 王邦茂, 王玉峰, 冯月, 穆金宝, 刘文天 |
基金项目及其编号 |
|
通讯作者 |
刘文天, 博士, 教授, 主任医师, 300052, 天津医科大学总医院鞍山道154号消化科, 天津医科大学总医院消化内科. lwentian64@163.com |
关键词 |
胰腺; 超声内镜; 机器学习; 影像组学; 沙普利加和解释 |
核心内容提要 |
我们收集了天津医科大学总医院2014-01至2024-12接受超声内镜检查的共216名胰腺病变患者的超声内镜图像及临床信息, 基于超声内镜影像组学特征和临床特征, 构建了多模态机器学习模型以识别胰腺病变的良恶性, 并用沙普利加和解释分析以探索模型的可解释性. |
出版日期 |
2025-05-28 09:53 |
引文著录 |
蔡晓晗, 范晓飞, 李姝, 方维丽, 王邦茂, 王玉峰, 冯月, 穆金宝, 刘文天. 基于影像组学和临床特征构建用于区分胰腺良恶性病变的多模态可解释机器学习模型. 世界华人消化杂志 2025; 33(5): 361-372 |
URL |
https://www.wjgnet.com/1009-3079/full/v33/i5/361.htm |
DOI |
https://dx.doi.org/10.11569/wcjd.v33.i5.361 |
© 2004-2022 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA
California Corporate Number: 3537345